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Abstract We investigate the classical and quantum
dynamics on the plateau of an excited potential energy
surface (PES) whose shape mimics the PES driving the
photoisomerization of the protonated Schiff base of ret-
inal (PSBR). We adopt a two-dimensional analytical
model of the PES, and perform an extended study by
varying the potential parameters, revealing a scenario
whose interest goes beyond the relevance for the spe-
cific case of PSBR. In fact, we document cases with
net differences among classical and quantum dynamical
predictions, for barrierless PESs. Classical trajectories
released on the PES display the signature of chaos and
partial trapping on the plateau, whose origin is purely
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dynamical, since no barrier exists. At variance, on the
same barrierless PESs, quantum dynamics does not pre-
dict any trapping, always showing a complete depletion
of the excited population according to an approximate
mono-exponential law. The plateau on the PES pro-
motes complex and unusual dynamical features, and it
is sufficient to introduce a very small barrier along the
cis–trans torsional mode to give rise to a multi-expo-
nential decay, also at quantum level. Our results are of
general interest because plateaux are often found in the
excited states of conjugated chromophores.

Keywords Wavepacket dynamics · Chaos ·
Dynamical trapping · Multi-exponential decay

1 Introduction

The progress in the field of theory of electronic structure
together with the continuous increase in computational
resources makes possible to describe with accuracy the
excited potential energy surfaces (PES) of medium-size
molecules undergoing true chemical photoreactions.
State of the art studies are therefore bringing to light the
complexity and richness of real-molecule excited PESs,
showing a wealth of unusual features as wide plateaux
[1–4], very low barriers, long and curved intersection
seams among PESs [5,6], and even truly multidimen-
sional intersections seams [7]. Such complex features
might have very important dynamical consequences
leading to new effects with respect to those commonly
met in ground-state reactivity. As an example, crossing
long intersection seams at different points could have
a deep impact in photoisomerizations, while very low
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energy barriers could allow sensible tunnelling effects
also for atoms heavier than hydrogen.

To improve our general understanding on these
phenomena, it is important to individuate and bring to
light general and transferable effects, encompassing the
gap between the level of “working knowledge” obtained
till now for ground-state and excited-state reactions.
Hopefully, such a working knowledge will in the near
future, help the chemical design and engineering of mol-
ecules for the control of their excited-state reactions,
with possible enormous applications in several areas of
nanotechnology, from molecular motors and devices to
molecular wires and artificial light antenna.

Wide plateaux seem to be a common feature in
excited PES of molecules with extended π -systems
[1–4]. They have been described with highly accurate
CASSCF method for several models of protonated Schiff
base of the retinal chromofore (PSBR) [1–3], but have
also been predicted for the excited PES of thiacyanine
[4], and probably exist also in the π /π* PES of DNA
bases as uracils (R. Improta and F. Santoro, unpub-
lished results). We have shown that a very small bar-
rier (200 cm−1) on the plateau of PSBR can switch the
excited population depletion from mono- to bi-expo-
nential [8], providing a plausible explanation for the
experimental evidences [9–13].

CASSCF calculations [1–3] have shown that the
excited state (S1) branch of the reaction coordinate in
PSBR is dominated by a sequential progression along
two nuclear modes that ultimately leads to a conical
intersection (CI) between the excited (S1) and the
ground (S0) PES. More specifically, the structural evolu-
tion of PSBR along the torsion describing the cis to trans
change is preceded by relaxation of the initial Franck–
Condon (FC) structure along a collective C–C stretching
mode of the chromophore backbone toward an energy
plateau (SP). This result is in line with several experi-
mental results for the chromofore in solution and in
protein environment [14–19]. Cembran et al. [20] have
shown that the essential features of the S1 PES of PSBR
are reproduced by the simple analytical potential VC

(plotted in Fig. 1):

VC(xs, yt) = 1/2msω
2
s x2

s − 1/2mtω
2
t xsy2

t , (1)

where xs and yt are the stretching and torsion coordi-
nates, respectively; ms and mt, their masses; and ωs and
ωt, their frequencies.

The initial wave packet is located at yt = 0 and at a
negative xs value, fixed so to reproduce the 6 kcal mol−1

energy gap between the FC and SP point predicted
via ab initio computations [2]. Due to the dependence
on xs, VC is bound along yt (i.e. acceleration toward
yt = 0) when xs < 0, while it is unbound (i.e. acceler-

ation toward large yt values) when xs > 0. This highly
anharmonic feature creates the plateau around the ori-
gin (SP) whose existence has been documented, via ab
initio MEP mapping for realistic PSBR models [3].

In the present paper, we investigate in detail the
dynamics on the plateau described by the model in
Eq. (1) by an extended study covering a wide range
of the PES parameters, comparing classical and quan-
tum dynamics results. Our results show that the pla-
teau is the origin of a very complex classical dynami-
cal behaviour, which can cause partial trapping even if
the PES is barrierless and chaotic, and we document a
strict correlation between these two phenomena: regu-
lar trajectories are those giving rise to trapping, while
chaotic trajectories are not trapped. For some choice
of the PES parameters, the complexity of the dynamics
reflects in a marked difference between the classical and
quantum predictions. Finally, the results here presented
attribute a general validity to the observation made in
[8] for the particular case of PSBR (ωs = 1,500 cm−1

and ωt = 200 cm−1), suggesting that the occurrence of
a small barrier on a plateau of an excited PES (due
to intra-molecular or environmental factors) can easily
switch the quantum population decay law from mono-
to multi-exponential.

2 Computational methods

We study the dynamics on the plateau of the VC poten-
tial. When suitable values for the parameters are chosen,
VC reproduces the essential features of the excited PES
of PSBR, i.e., the FC and SP region and the existence of
two decaying channels which open along yt for xs > 0.
It does not describe the region of the CI, which must be
thought of to be somewhere in the decaying channels.
Below we assume that, once entering into these chan-
nels, the wave packet irreversibly proceeds toward the
CI. Very interesting experimental information on the
molecular structure at the conical intersection of PSBR
has been reported by the group of Mathies [21].

Classical trajectories are obtained integrating the clas-
sical Hamilton’s equation of motion using a code written
within the Mathematica package environment. Quan-
tum calculations are performed using a home-made pro-
gram and assuming the simple kinetic operator T =
(2ms)

−1∂2/∂x2
s + (2mt)

−1∂2/∂y2
t . We use the Fourier

method [22], representing the wave packet on a bi-
dimensional 324 × 324 grid of points defined in the
range −3.5 au � xs � 14 au and −14 au � yt � 14 au
(ms = mt = 1 amu), and computing the kinetic inte-
grals by fast Fourier transform FFT. The propagation
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Fig. 1 3D plot and contour plot of a potential VC and b poten-
tial VB. In the contour plot, superimposed to the potential we
also report the |FC〉 wave packet at t = 0. In a the arrows and

the dashed line sketch the MEP toward negative values of yt, but
notice that due to the potential symmetry an equivalent MEP
develops toward positive values of yt

is accomplished by an orthogonalized-Lanczos method
[23,24].

The increasing acceleration toward larger yt in the
region xs > 0, prompted by the shape of the PES in
Eq. (1), rises technical problems in both the classical and
quantum calculations. In the former case, the necessary
propagation step in the numerical solution of equation
of motion becomes exceedingly small, while in the latter
case, a very dense grid would be needed to reproduce
the acquired kinetic energy. Actually the potential VC

in Eq. (1) is interesting for our scopes only in the plateau
region, i.e. in a limited range of torsional angles around
the equilibrium value yt = 0, and the acceleration at
large yt (for xs > 0) is only important as much as it causes
an irreversible motion toward the CI, once the decay
channel has been entered. Thus, for classical trajectories,

the numerical problem was solved stopping each trajec-
tory as soon as it reaches a |yt| value, from which it
can be safely assumed that it will not go back to the
plateau region. For quantum calculations, the problem
is solved by transforming the potential in the uninter-
esting region, so that it becomes flat. This is accom-
plished by defining a new potential VC

Q(xs, yt) by means

of a switching function (E1 + VC(xs, yt) exp[αQR])/(1 +
exp[αQR]), with R = VC(xs, yt)−E2. VC

Q(xs, yt) is identi-

cal to VC(xs, yt) when VC(xs, yt) � E2 and assumes the
constant value E1 when VC(xs, yt) � E2. The chosen
parameters E2 = −35,000 cm−1, E1 = −45,000 cm−1

and αQ = 0.001 cm assure that VC
Q(xs, yt) differs from

VC(xs, yt) only in a region where the wave packet is so
accelerated that it never comes back to the SP region.
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Because of that, on the following, we will generally
refer to both of them as VC. In the flat region the
wave packet is progressively and very slowly absorbed
to avoid unphysical effects at the borders of the grid.
This is accomplished by multiplying the wavefunction
by the function Axs(xs)Ayt(yt) [25] with

Ap(p) =

⎧
⎪⎨

⎪⎩

1 pmin < p > pmax,

exp(−Cp min
abs (p − pmin)2) p < pmin,

exp(−Cp max
abs (p − pmax)2) p > pmax,

(2)

where p = xs, yt, xmin
s = ∞, xmax

s = 5.9 au, Cs max
abs =

0.0011 au, ymin
t = −5.9 au, ymax

t = 5.9 au, Ct min
abs =

Ct max
abs = 0.0011 au. We have tested the convergence of

the quantum results with respect to the size and the num-
ber of points of the grid and to the rate of absorption of
the wave packet.

3 Results

3.1 Motion of classical trajectories with variable initial
position along yt

In Cembran et al. [20] it is shown that classical trajecto-
ries released on VC (ωs = 711 cm−1 and ωt = 503 cm−1)
at xs = −1 au (corresponding to an FC–SP energy gap
of 6 kcal/mol) and at different values of yt with zero
initial momenta fall into two different categories: the
ones that remain permanently (or for a very long time)
trapped in the SP region and are non-reactive (i.e. do
not lead to a permanent cis–trans displacement) and the
ones that quickly escape toward large yt values and (are
assumed to) reach the CI, where they decay to the S0
energy surface. Here, we choose the lines yt ± 4 au as
borders between the non-reactive (NR) region (|yt| �
4 au, including the FC and SP points) and the reactive
(R) region (|yt| > 4 au, the decay channels irrevers-
ibly driving to CI) and compute the time τ spent by
a single trajectory in NR before crossing the borders,
as a function of the initial position yt(0). The results
obtained propagating the trajectories up to 20 ps, are
reported in Fig. 2 and show a striking dependence of τ

on the initial position (we have exploited the fact that
the PES is an even function of yt and scanned only the
region of positive yt(0) for the range of initial positions
0 < yt(0) < 1 au with steps of 0.01 au).

First, notice that the trajectory with yt(0) = 0 is
unique, since it never acquires momentum along yt and
is obviously non-reactive. However, in the nearby region
around yt(0) = 0, τ varies drastically with yt(0), being for
example 430 fs at yt(0) = 0.07 au and at yt(0) = 0.2 au,
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Fig. 2 Results of the dynamics of a set of trajectories with zero
initial momenta xs(0) = −1 au and yt(0) variable from 0 to 1 au
(i.e. the region spanned by |FC〉 at t = 0, see Fig. 1) with steps of
0.01 au: a time of permanence in the non-reactive region (squares,
dot line) and Lyapunov times (the inverse of Lyapunov exponents,
full line); b Lyapunov times. Computed values are indicated by the
squares while the interpolating lines are only reported for better
visualization

while it is 2,850 fs at yt(0) = 0.1 au. When the analysis is
extended toward larger yt(0) values, even more remark-
able results come out. In fact, while in the region around
yt(0) = 0.3 au and yt(0) = 0.58 − 0.75 au τ exceeds the
maximum propagation time 20 ps (and this explains the
flat part of the graph in Fig. 2a), it is only 570 fs at
yt(0) = 0.55 au and it is always lower than 350 fs for
yt(0) > 0.8 au.

These features strongly suggest that, due to the topol-
ogy of VC, the decay of a wave packet starting at FC
can be characterized by different time regimes. While
the reason for the question why a fraction of the tra-
jectories escape accelerating along yt is intuitive, the
trapping mechanism is subtle. In mechanistic terms such
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behaviour originates from the fact that in the xs > 0
region, a classical particle feels a force toward large yt
but also toward xs = 0. Thus, trajectories that do not
escape in time from the NR region (i.e. do not acceler-
ate enough along yt while crossing the half-plane xs > 0)
go back to the bound region xs < 0, where they feel a
compression force toward yt = 0. For given initial condi-
tions, such a mechanism repeats at each oscillation along
xs resulting in a dynamical trapping.

3.2 Instability and dynamical chaos

The trajectories described above are extremely sensi-
tive to the initial conditions and to the values of the
parameters of the PES. For instance, while τ is 2,850 fs
for yt(0) = 0.1 au, it is only 1,180 fs if one shifts the
initial condition by 1% yt(0) = 0.101 au. Also, a slight
change of the potential VC could have a dramatic effect.
In fact changing ω′

s by 1% (i.e. from 711 to 718 cm−1)
for yt(0) = 0.1 au, causes a change in τ of 60% (2,850 to
>1,130 fs). The effect is still larger if we instead perturb
ω′

t by 1% (from 503 to 508 cm−1) getting τ = 430 fs: a
decrease of a factor 6.6.

These features suggest that the dynamics is chaotic
and that there is a correlation between high τ values
and better stability with respect to perturbations. To test
this hypothesis, we computed the Lyapunov exponents
for the same set of 101 trajectories for which we calcu-
lated τ in Fig. 2a, following the method of Benettin et al.
[26] and stopping the procedure when the single trajec-
tory was still in the NR region. The obtained values are
approximate (but fully adequate for our scopes) since
it was not always possible to reach a full convergence
of the t → ∞ limit that defines the Lyapunov expo-
nents, most of all for the trajectories that quickly escape
the non-reactive region. The Lyapunov exponents are
reported in Fig. 2b, while their inverses, the Lyapunov
times (i.e. the time constant for the exponential diver-
gence) are reported in Fig. 2a (solid line), together with
τ . Lyapunov exponents are always >0 (chaos), but their
magnitude varies greatly and is clearly correlated with
τ , being larger (faster exponential divergence of close
trajectories) in the region where τ is shorter. Therefore,
regular (chaotic) trajectories are those which remain (do
not remain) trapped in the NR region. Notice that also
the trajectory at yt(0) = 0 au, which has trivially an infi-
nite τ , is chaotic and a very slight change in yt(0) leads
to a quick escape from the NR region. Further insight
in to the problem could come from an application of
the quasiperiodic orbit analysis proposed by Stock et al.
[27,28].

3.3 Classical simulation of the wave packet motion

We turn now to study the dynamics of the 2D wave
packet |FC〉 assuming that the system, initially in the
ground (harmonic) vibrational state of the S0 surface,
is vertically excited to S1 by a sufficiently short laser
pulse. A bunch of classical trajectories representative of
|FC〉 is obtained choosing the initial conditions accord-
ing to the Wigner distribution (WD) and checking the
convergence of the desired observables with respect to
the number of the trajectories. For the present case,
the WD is simply the product of the square modulus
of the vibrational wave function in the coordinate and
in the momentum space for each coordinate,

W
(
xs, pxs, yt, pyt

)

= NsNt exp[−(xs−xs(0))/2σ 2
s −2σ 2

s p2
s ]

× exp[−(yt − yt(0))/2σ 2
t − 2σ 2

t p2
t ], (3)

where Ns and Nt are normalization constants, σs =
1/

√
2msωs, σt = 1/

√
2mtωt and (xs(0), yt(0)) = (−1 au,

0 au) is the FC point.
For each simulation we ran 1,000 trajectories for a

time interval of 1 ps, and checked the convergence of the
results by increasing the number of trajectories. Since
we are interested in how the |FC〉 moves into the SP
→CI channel, we monitor the S1 wave packet popula-
tion decay out of the NR region. This is computed as
PNR(t) = 1 − FTI(t) where FTI(t) is the time-integrated
flux FTI(t) along the borders yt ± 4 au. Different time
regimes in the motion toward the CI would reflect into
a multi-exponential decay of the PNR(t) population.

FTI(t) at time t is classically computed as the fraction
of trajectories that have crossed the lines at yt ± 4 au in
the time interval [0, t]. This recipe is completely equiva-
lent to adopting a semi-classical initial-value representa-
tion (IVR) of the propagator, and then to performing the
evaluation of the observable in the linearized approxi-
mation (LSC-IVR) [29]. As it is well known, this approxi-
mation can reproduce many quantum features but it fails
when tunnelling is important [30]. This comment will be
of relevance in the following discussion.

For the sake of simplicity, we consider cases in which
there is no frequency shift for the two modes after the
transition from S0(ω

′
s, ω

′
t) to S1(ωs, ωt). Thus, we use

ωt = ω′
t = 503 cm−1 and ωs = ω′

s = 711 cm−1.
Figure 3 (line 1) reports the result for PNR(t) obtained

with trajectories whose initial conditions sample the cor-
rect coordinates and momenta WD, and compares it
with the result (line 3) obtained sampling only the wave
packet coordinate distribution (CD) and imposing null
initial momenta to both coordinates (i.e. ps(0) = 0 and
pt(0) = 0), a 2D extension of the situation considered in
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Sects. 3.1 and 3.2 and in ref. [20]. Line 3 shows clearly a
non mono-exponential decay of PNR(t) for the CD case,
which is stressed also by the semi-log plot in the inset
of Fig. 3: after an induction time, about one half of the
trajectories (and hence of the wave packet) crosses the
borders quickly, while the other half remains trapped in
the NR region and/or escapes from it much more slowly.
At this point, we stress that a permanent trapping could
turn into a slow decay when taking into account the
perturbation due to the interaction with other intramo-
lecular modes or with the solvent.

Line 3 shows that even considering the proper 2D
coordinate-distribution of |FC〉 (CD), two clearly differ-
ent time regimes can be distinguished in its dynamics, as
suggested by the 1D analysis in [20]. This behaviour
changes drastically when we take into account the cor-
rect WD momenta distribution (line 1) of |FC〉. In fact,
in this case, the major part of the wave packet decays
according to a single exponential, while only a resid-
ual part decays more slowly or is trapped in the pla-
teau region. This also shows that the effectiveness of the
dynamical trapping is strongly decreased by introduc-
ing a momentum distribution in the bunch of trajecto-
ries, which is a further step in mimicking the quantum
behaviour.

Lines 2 and 4 are analogous to lines 1 and 3, respec-
tively, from which they differ because here
ωt = 508 cm−1. In Sect. 3.2 we showed that such a slight
change (1%) has a dramatic effect on the dynamics of the
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been re-normalized (see Supporting Material for the normaliza-
tion factors)

trajectories with null initial momenta and xs(0) = −1 au.
Figure 3 shows that the high sensibility evidenced by sin-
gle trajectories to the parameters of the PES is strongly
reduced when one considers a representative ensemble
of trajectories.

3.4 Quantum wave packet dynamics

Lines 5 and 6 of Fig. 3 report the results of the exact
quantum dynamics of |FC〉 for the parameters ωt =
ω′

t = 503 cm−1 and ωt = ω′
t = 508 cm−1. Compari-

son of lines 3 and 5 shows that the WD classical bunch
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Table 1 Exponential fits of quantum PNR(t) for different choices of the S1 potential

Potential ka Bmax τb
0 Mono-exponential Fitc Bi-exponential Fitd

VC 1 0 28 τ1 = 47 A1 = 0.50 τ1 = 22
A2 = 0.50 τ2 = 80

χ2 = 7.2 × 10−4 χ2 = 1 × 10−4

VC 1.2 0 26 τ1 = 73 A1 = 0.48 τ1 = 32
A2 = 0.52 τ2 = 124

χ2 = 1.2 × 10−3 χ2 = 1.2 × 10−4

VC 1.6 0 27 τ1 = 107 A1 = 0.59 τ1 = 56
A2 = 0.41 τ2 = 214

χ2 = 1.6 × 10−3 χ2 = 1.6 × 10−4

VB 1 205 21 τ1 = 136 A1 = 0.25 τ1 = 16
A2 = 0.75 τ2 = 184

χ2 = 2.3 × 10−3 χ2 = 7.8 × 10−5

VB 1 475 21 τ1 = 272 A1 = 0.20 τ1 = 17
A2 = 0.80 τ2 = 362

χ2 = 3.2 × 10−3 χ2 = 9.0 × 10−5

Maximum barriers (Bmax) in cm−1, time constants in fs
aωs = k × 711 cm−1, ωt = 503 cm−1

bτ0 induction time not considered in the fit (in femtoseconds)
cf (t) = exp(−(t − τ0)/τ1). Fitted from t = τ0
df (t) = A1 exp(−(t − τ0)/τ1) + A2 exp(−(t − τ0)/τ2). A1 + A2 = 1, fitted from t = τ0

of trajectories reproduces the dynamics of the quantum
wave packet up to about 80 fs. Later, the exact quantum
results show a faster decay and no dynamical trapping at
all. Semi-log plot suggests a substantial mono-exponen-
tial decay. Table 1 actually documents that a bi-expo-
nential fit allows some improvement with respect to the
mono-exponential one, predicting two equal amounts of
population decaying with time constants which differ by
less than a factor 4. We conclude that the mere existence
of the plateau on the potential VC causes some marks of
a bi-exponential decay also at quantum level, but they
are modest (as confirmed by the plots of the fits reported
in Supporting Materials, SM). Comparison of lines 5 and
6 indicates that in the quantum system the sensitivity to
the exact parameters of the potential is lost.

Wave packet snapshots. Further insight into the wave
packet quantum dynamics can be gained by the inspec-
tion of a set of snapshots. In Fig. 4, we report the contour
lines of the probability density of |FC〉 in the coordinate
space; the time step at which the snapshots are taken
is a quarter of the oscillation period Ts = 46.9 fs of the
stretching xs, whose motion intuitively represents a kind
of clock for the reaction, bringing periodically the sys-
tem in the bound (xs < 0) and unbound (xs > 0) region.
The total time-window covers two complete oscillations
along xs. At t = 0 |FC〉 is the expected 2D gaussian cen-
tred at xs = −1.0 au and yt = 0 au. At t = Ts/4 there is a
crossing to the unbound region, while at t = Ts/2 |FC〉
reaches a turning point at about xs = 1.0 au. In the mean
time the wave packet starts elongating along the torsion

but, in agreement with Fig. 3, at t = Ts/2 no signifi-
cant part of it has yet crossed the borders of the NR
region (PNR(Ts/2) = 1.00). At later times, the central
part of |FC〉 goes backward along xs and t ≈ 3Ts/4 it is
re-entering the bound region where it reaches the left
turning point at t = Ts. It is very interesting to note
that in this second-half period (i.e. while the central part
of |FC〉 is going back to the bound region) its wings
keep on their run in the unbound region, toward the
borders of the NR region; as a consequence, the wave
packet drastically elongates and PNR(t) starts decaying
(it is 0.88 at t = 3Ts/4 and 0.6 at t = Ts). At the begin-
ning of the second period |FC〉 moves once more toward
the unbound region while the wings keep elongating
up to t = 6Ts/4. Indeed, at this time they are almost
completely divided from the central part of the wave
packet that still appears nicely localized. In the follow-
ing quarter of period, the surviving part of |FC〉, still in
the unbound region, starts elongating once more along
yt and in the last quarter of the second period its wings
keep on their motion toward the decay channels while
the central part goes back to the left turning point. At
t = 2Ts PNR(t) = 0.34 and thus 66% of the initial wave
packet has already moved out of the NR region. Even
if the pictures would suggest a variable decay-rate of
PNR(t) within each period, this comes out to be a distor-
tion due to the impossibility to plot a continuous movie
of the |FC〉 motion instead of a set of snapshots. In fact
as shown in Fig. 3, after a first induction time, the PNR(t)
decay appears pretty much as a mono-exponential func-
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Fig. 5 Effect on the decay of the non-reactive wave packet
population, obtained multiplying the stretching frequency, ωs =
711 cm−1, by Factor k; a and b classical-trajectories simulations
with initial momenta equal to zero (CD) a, or distributed accord-

ing to the Wigner distribution (WD) b; c quantum results; d semi-
log plot of the quantum results. Notice in panel d that some marks
of a bi-exponential decay exist but are moderate

tion of time, with only very small plateaux separated
in time by ∼ Ts. The snapshots taken during the third
oscillation period along xs are very much similar to those
of the second period. The close similarity of the wave
packet motion at each period is nicely consistent with a
mono-exponential decay of PNR(t).

3.5 Effect of a change in the parameters
of the potential

According to quantum dynamics, the PNR(t) decay is
approximately mono-exponential and no trapping
occurs for the VC parameters selected in [20]. In view
of the model study pursued here we investigated if by
changing the PES parameters, but always considering
barrierless surfaces, a quantum trapping could be
observed. Thus, we altered the ratio between the fre-
quencies of the two nuclear modes, by keeping fixed
ωt and ω′

t at 503 cm−1 and defining ωs = ω′
s = k ×

711 cm−1 with k = 0.9, 1.0, 1.2, 1.4, 1.6. The results for
PNR(t) are reported in Fig. 5 for the cases where the

computation is performed for a bunch of classical tra-
jectories with null momenta CD (a panel), according to
WD (b panel) or using wave packet quantum dynamics
(c and d panels).

Panel a clearly shows that an increase of the stretch-
ing frequency ωs = ω′

s increases the effectiveness of the
dynamical trapping in such a way that at ωs � 1.4 ×
711 cm−1 ≈ 1, 000 cm−1 almost no trajectory escapes
the NR region. An analysis of the Lyapunov exponents
obtained with k = 1.6 for the same initial conditions of
Fig. 2, shows that the fraction of chaotic trajectories is
much less than for k = 1.0. This finding supports the
validity of the link we stressed above: the more regu-
lar is the dynamics the more effective is the trapping.
Moreover, it is shown that PNR(t) is very sensitive to
the potential in the range 0.9 < k < 1.2, which includes
the parameter k = 1.0, corresponding to the model of
[20]. It is interesting to notice that the larger sensitivity
of the dynamical trapping of classical trajectories with
null initial momenta in the 0.9 < k < 1.2 range is well
reproduced by a crude but suggestive model based on a
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Mathieu equation, obtained assuming that xs follows an
unperturbed harmonic motion.1

Comparison of panels b and a confirms what we stated
in the previous section for the case k = 1.0, i.e. that the
introduction of the distribution of the momenta always
decreases the fraction of the trapped trajectories, and
once more it shows that PNR(t) is more sensitive to k in
the range 0.9 < k < 1.2. Comparison of panels b and c
shows that, for the same k, the classical (WD) and quan-
tum results are practically coincident up to t = 80 fs. For
longer times, there is a difference that increases when k
increases. The classical PNR(t) decay stop in about 200 fs
to a finite not-null value (a fraction of the trajectories
is permanently trapped). Of course, when considering
the possible effect of other nuclear modes, this trapped
part might also decay toward the CI but to a much lower
rate resulting into a multi-exponential decay. A correct
quantum mechanical calculation eliminates the trap-
ping effect showing that, after a first induction period
of about 20 fs, the quantum PNR(t) always decays to
zero, although the decay-rate decreases with increas-
ing k. This puts into evidence a substantial difference
between the quantum results and their classical approx-
imation. The reason for this classical/quantum discrep-
ancy is probably due to the well-known deficiency of the
LSC-IVR semi-classical approach in the description of
tunnelling phenomena [30], which in the present case are
not due to a potential barrier but to a dynamical effect.
Our results are somewhat reminiscent of those obtained
by Heller and Davies [31] in the study of resonances in
molecular spectra of non-harmonic bi-dimensional sys-
tems, and as a matter of fact our potential VC in Eq. (1)
can be seen as a particular case of the one they stud-
ied (it includes an additional term 1/2mt�

2
t y2

t , that in
our case is zero, �t = 0). In the cases studied in [31], the
potential supports bound states and, while classical
trajectories are confined in particular regions of the
phase-space, local quantum states couple showing spit-
ted doublets which the authors interpret as due to a
dynamical barrier and the consequent quantum tunnel-
ling. On the contrary, our potential VC in Eq. (1) does
not support any bound state and the dynamical bar-
rier which traps a fraction of classical trajectories in the
plateau region is unable to confine the quantum wave-
packet motion.

1 The equation of motion along the yt co-ordinate becomes then a
Mathieu equation, whose characteristic exponent is xs(0)(ωt

/
ωs)

2.
For xs(0) = −1 au, and the assumed frequency ratio (k = 1) we
are just at the borderline between bound and unbound motion
along yt (real and complex exponent, respectively). Surprisingly
such sensitivity in this region of k values is still present, even if
greatly reduced, also in the correct quantum dynamics.

Semi-log plots in panel d show that quantum PNR(t)
decays approximately as a mono-exponential but evi-
dence some marks of a bi-exponential decay, particu-
larly for k = 1.2, 1.4, 1.6. As an example for the cases
k = 1.2, 1.6, Table 1 reports the results of the bi-expo-
nential fit showing that is about ten times better than a
mono-exponential one.

3.6 Effect of a small barrier along the torsional
coordinate

In ref. [8], we showed that for the specific parameters
of PSBR (ωs = 1,500 cm−1 and ωt = 200 cm−1), the
introduction of a small barrier (about 200 cm−1) on the
PES along the cis–trans torsional deformation at xs > 0,
is able to offset the momentum effects which, as we
have seen above, contrast the trapping phenomenon,
and induce a multi-exponential decay of the quantum
PNR(t). Here we inquire if such a phenomenon occurs
also for very different potential parameters (namely
ωs = 711 cm−1 and ωt = 503 cm−1), being thus a general
feature of the dynamics on a wide plateau. This scenario
would be of general interest since even top-quality quan-
tum chemical calculations can fail to distinguish a bar-
rierless plateau from a plateau modulated by a barrier
of very few hundreds of wavenumbers in medium-size
molecules. Furthermore barriers of this kind could also
come out as an effect of the environment in which the
molecule is embedded.

In order to introduce a barrier in the original PES,
we have modified the functional form of VC(xs, yt) in
Eq. (1) to get VB(xs, yt), a new and more flexible PES.
Accordingly, the 1/2mtω

2
t xsy2

t term in Eq. (1) has been
substituted with

F(xs, yt) = f2(yt) + f1(yt)exp[−γ xs]
1 + exp[−γ xs] , (4a)

f1(yt) = 1/2mtω
2
t y2

t , (4b)

f2(yt) = pt

(
2 exp[−1/α2

y] − exp[−(yt − ym
t )2/α2

y

− (yt + ym
t )2/α2

y]
)

, (4c)

VB(xs, yt) = 1/2msω
2
s x2

s − xsF(xs, yt) (4d)

VB(xs, yt) is negligibly different from VC in the half-
plane xs < 0, retains a plateau around the origin and,
in the xs > 0 half-plane, at variance with VC shows a
barrier along yt, whose height (with respect to yt = 0) is
zero at xs = 0 and then increases almost linearly with xs
depending on the parameter αy. The barrier location is
practically constant with xs. With respect to xs, F(xs, yt)

is a switching function which gives f1(yt)[the same as in
Eq. 1] when xs < 0 and turns it smoothly into f2(yt) when
xs > 0; the value of γ is chosen so to ensures a switch
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fast enough to make the new potential VB only negligi-
bly different from VC in the half-plane xs < 0. Despite
its lengthiness, f2(yt) is just a combination of two gauss-
ian functions, written in a way to ensure that f2(0) = 0.
The frequencies and masses are those utilized in [20] and
in Sect. 3.1 to 3.4, while the values of the new param-
eters introduced in Eqs. (4a), (4b), (4c) and (4d) are
ym

t = 1 au, pT = 0.1 au and γ = 5 au and we have tested
two different choices αy = 1.8 au and αy = 1.7 au, that
give, respectively, a maximum accessible barrier height
(Bmax), at the turning point xs = 1.0 au, of 205 cm−1

(located at yt = 0.53 au) and of 475 cm−1 (located at
yt = 0.63 au). In Fig. 1b, VB(xs, yt) is plotted for the case
Bmax = 205 cm−1, and it is compared with the original
potential VB(xs, yt) of Fig. 1a (see also SM for other
plots). For xs > 0, at yt values larger than the position
of the barrier, VB decreases steeper than VC but this is
of no consequence for our study.2

Figure 6 shows the plot of the PNR(t) evolution on VC

and on the modified potential VB with the two choices
Bmax = 205 cm−1 and Bmax = 475 cm−1 and the inset
reports the semi-log plot. It is seen that the three curves
are almost coincident up to 40 fs and then they start
diverging since, while the curve for VC in the semi-
log plot keeps an approximately constant slope (mono-
exponential decay) the two curves for VB change clearly
to a different slope (bi-exponential decay) whose mag-
nitude, quite intuitively, decreases with the increase of
the barrier. These conclusions are supported by compar-
ison of the best mono- and bi-exponential fits reported
in Table 1, which shows that the existence of a very
small barrier greatly amplifies the weak signs of multi-
exponential behaviour already seen in the case on the
VC potential and leads to a clear bi-exponential decay.
For the case of potential VB with Bmax = 205 cm−1, 1/4
of PNR(t) decays very quickly with τ1 = 16 fs and the
rest decays more slowly with a τ2 = 184 fs. Increas-
ing the barrier to Bmax = 475 cm−1, the faster decay
rate is almost unaltered (τ1 = 17 fs) but now it concerns
about 1/5 of PNR(t) while the remaining part decays with
τ2 = 363 fs, which is slower, as intuitive, than in the case
when the barrier is smaller. The faster decay of PNR(t)
is accomplished during one oscillation period along the
stretching coordinate (46.9 fs), and hence it is due to
the wings of the |FC〉 wave packet that at the first pas-

2 In fact, though this feature causes some slight anticipation on
the times at which the border of the NR non reactive region is
crossed and gives some different preferential orientation to the
part of the wave packet travelling toward the borders (due to
orientation of the forces it feels), this is of no relevance for our
interest here, since the change occurs in a region where in any case
the wave packet is irreversibly accelerate to escape from the NR
region.
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data are reported in Table 1 and figures comparing the data and
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sage at xs > 0 elongate toward the decay channels (this
also explains why the amount of population decaying
at faster rate is smaller for the case Bmax = 475 cm−1,
since in this case the barrier is shifted more along yt
and a littler amount of |FC〉 can initially escape it). At
each of the subsequent oscillations, a smaller percent of
the surviving part of the wave packet enters the decay
channels giving rise to the second slower decay.

In Fig. 7, we show some snapshots of the probability
density of the wave packet moving on the potential with
the lower barrier Bmax = 205 cm−1, taken at the same
times as in Fig. 4, with whom Fig. 7 should be compared.
The corresponding wave packets are identical at t = 0
and are still very similar at t = Ts/4. On the contrary, at
t = 3Ts/4 the part of the wave packet crossing the bor-
ders on VC seem to be larger than the corresponding
quantity for the wave packet moving on VB. Consis-
tently, the data in Fig. 6 indicates that it is about at these
times that the decay of PNR(t) for VC starts being faster
than that for VB. The situation does not change in the
next snapshot when one period of the oscillation along
xs is over. Because of the barrier it felt at xs > 0, the
wave packet that starts the second oscillation on VB is
much less elongated than the one that moves on VC

and this explains why at later times a smaller part of
it crosses the borders (look especially the snapshots at
t = 5Ts/4 and t = 6Ts/4). Moreover, the differences
in the dynamics on the VC and VB potentials are per-
manent since each oscillation is similar to the previous
one and the t = 2Ts and t = 3Ts wave packet closely
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resemble the shape it had at t = Ts. These differences
indicate that the dynamics of the wave packet on VB has
entered a different time regime, giving rise to the slower
decay of PNR(t) described by the slower component of
the bi-exponential fit reported in Table 1.

4 Conclusions

In this paper, we have extensively investigated the
dynamical consequences of a plateau on the excited
PES, like the one predicted by highly accurate CASSCF
method for PSBR [1–3]. We utilized a simple 2D analyti-
cal expression VC for the PES and varied its parameters.

The study of the classical motion of individual tra-
jectories on VC with the same parameters used in [20]
has shown evidence for dynamical chaos, enlightening
a clear correlation between the regularity of a single
trajectory and the time duration of its trapping in the
plateau region (the smaller is its Lyapunov exponent
the longer is the trapping). On the other hand, quantum
dynamics has shown that, on the barrierless VC poten-
tial, the trapping is not effective anymore at quantum
level. Indeed, the wave packet decays entirely and about
mono-exponentially in the reactive channels and the
classical simulations suggest that this is due to the role
of the initial momentum distribution, which destroys the
regular trajectories that would remain trapped if starting
with zero-momentum (as in [20]).

Nevertheless, this explanation is only partial since, by
varying the parameters of the PES, we report several
cases where a significant fraction of classical trajecto-
ries is trapped even when their initial conditions cor-
rectly simulate a wave packet (i.e. when also the initial
momenta distribution is properly taken into
account). This shows a net discrepancy with quantum
results which, for all the barrierless PESs considered,
always predict a complete depletion of the non-reac-
tive population according to a law approximately mono-
exponential (or weakly bi-exponential), although the
decay-rate changes with the potential parameters.

The comparison of quantum and classical results show
that the dynamics on VC is very rich and complex, sug-
gesting that, although not sufficient at quantum level,
the existence of the plateau is the essential ingredient
for the occurrence of a multi-exponential decay. The
classical trajectories study is very instructive in so for it
indicates that the trapping is made more difficult by
the initial momenta distribution of the wave packet.
This naturally suggests that a small barrier contrasting
these momenta might restore the condition for trap-
ping, creating consequently a situation more favour-
able to the appearance of a bi-exponential decay. We
have shown that this is indeed true and, in fact, when
the shape of the PES plateau is changed, introducing a
shallow barrier toward the decay channels, a bi-expo-
nential decay is observed also at quantum level. For a
torsional frequency of ∼500 cm−1, a very small barrier
of ∼ 200 cm−1 is enough to induce the change in the
decay- law.

The clear discrepancy between quantum results and
their classical approximation (WD) obtained for some
choices of the potential parameters has an interest in
itself, and suggests that, for potential surfaces exhibiting
large plateaux, any attempt to avoid quantum propaga-
tion can lead to significant errors.
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In future work we plan to investigate the role of the
environment on the dynamics on such a model system.
In particular, since the wave packet noticeably spreads
on the PES, it will be interesting to address the role of
de-coherence effects.
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